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ABSTRACT: Resonant amplification has been suggested to cause the occasional large amplitude

undulations in the jet streams, central to several impactfull phenomena like blocking, sudden

stratospheric warmings and extreme weather. One of the models used for establishing the role

of resonant amplification is a barotropic 𝛽-plane model with a constant zonal mean flow. In

this work we examine how a specified amount of meridional leakage of wave activity to the

subtropics affects the quasi-resonant response to a meridionally localized, pure zonal wavenumber

forcing. The main novelty of our analysis is the derivation of an analytical solution, with which

we quantitatively examine the effects of a specified amount of waveguide-leakage, and compare

it to the effects of damping. We further examine the effects of leakage on the resonance of a

meridionally-concentrated jet, through numerical simulations that include a carefully-constructed

sponge layer to the south of the jet waveguide. We find that that meridional leakage weakens the

resonant response, similar to what damping does, namely, the amplification and zonal-phase change

across resonance are weaker. Leakage also affects the horizontal wave structure equatorwards of

the forcing, by introducing a westward phase tilt towards the subtropics. Damping, on the other

hand makes the amplitude of the wave decrease away from the forcing on both its side with only a

minor phase tilt. Overall, it is concluded that even quite a large wave leakage towards the equator

does not necessarily preclude the possibility of quasi-resonant amplification, but earlier estimates

which ignore this leakage by assuming two fully-reflecting turning latitudes overestimate the effect

by a considerable margin.
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SIGNIFICANCE STATEMENT: One of the main causes of extreme temperatures and extreme25

weather is a strong meandering of the jet stream, with the undulations remaining roughly fixed in26

space, allowing the extreme conditions to develop. One of the mechanisms that has been suggested27

for these undulations is quasi-resonance of stationary Rossby waves which propagate along the28

jet-stream waveguide. A main assumption in these studies is that the jet is a perfect waveguide,29

however, it is well known that Rossby waves on a sphere tend to propagate towards the equator,30

making the wave-guide leaky. In this study we examine how leaking of waves towards the tropics31

affects quasi-resonance, and whether it still allows large undulations like those leading to extreme32

events to form.33

1. Introduction34

Resonant amplification has been suggested as an explanation for the occasional appearance35

of large amplitude undulations in the jet streams ever since Rossby and collaborators (1939)36

formulated the equations for Rossby waves (Haurwitz 1940). For example, resonance has been37

suggested to play a role in the occurrence of blocking (e.g Tung and Lindzen 1979a,b; Tung 1979),38

sudden stratospheric warmings (e.g. Plumb 1981; Tung and Lindzen 1979a,b; Tung 1979; Esler39

et al. 2006), multiple flow regimes and corresponding low frequency variability (e.g Charney and40

DeVore 1979; Källén 1997; Jin and Ghil 1990; Luo 1997), and extreme weather (e.g Petoukhov41

et al. 2013; Coumou et al. 2014; Petoukhov et al. 2016; Stadtherr et al. 2016; Kornhuber et al.42

2017a,b; Mann et al. 2017, 2018; Kornhuber et al. 2019).43

To strictly establish that resonant amplification occurs in the atmosphere, we need to demonstrate44

that by varying an external parameter of the mean flow or forcing, we get sharp amplification of the45

forced wave due to its getting closer to being a normal mode, with a sharp 𝜋-phase change across46

the resonance. This is straight-forward using the barotropic and shallow-water beta-plane channel47

models introduced by Rossby and collaborators (1939); Rossby (1940). However, though able to48

account quite well for many of the features of the observed upper level flow, these models are too49

simplified to establish the role of resonance in realistic flows. First, the exact "tuning" needed for50

resonance is not as easy to form in a latitude-height varying zonal mean flow on a sphere, with51

possible critical layers, equatorwards wave refraction, vertical propagation into the stratosphere,52
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and various forms of damping. Second, the exact tuning of the mean flow into a resonant state will53

necessarily be ruined once resonant waves grow enough to modify the mean flow.54

Tung, in a series of papers (Tung andLindzen 1979a,b; Tung 1979), systematically relaxed various55

of the tuning-related simplifications, and derived semi-analytical solutions showing the existence56

of quasi-normal modes under more realistic flow conditions, provided the modes are vertically57

trapped (see also Esler and Scott 2005). Various studies starting from Charney and DeVore58

(1979) addressed the issue of nonlinear mean-flow modification, along with various tuning-related59

simplifications, in a range of model complexities, and showed that resonance can occur through60

self-tuning, and shape the low frequency variability of the flow, by allowing multiple flow regimes61

to exist (e.g Pedlosky 1981; Plumb 1979, 1981; Jin and Ghil 1990; Luo 1997; Esler et al. 2006;62

Lutsko and Held 2016).63

One aspect which has only partially or indirectly been addressed in the above studies is the effect64

of equatorward refraction. On the sphere, Rossbywaves tend to refract towards the equator (Hoskins65

and Karoly 1981) where waves tend to break and be absorbed at a critical layer (Killworth and66

McIntyre 1985). Such a wave activity-leakage to the equator affects the ability of normal modes,67

and correspondingly resonance to form (Tung 1979; Källén 1997; Lutsko and Held 2016). We will68

focus on this effect here.69

Leakage to the equator is particularly important if another simplification of idealized resonance70

studies is relaxed, namely, that the wave source and mean flow are zonally symmetric. If the wave71

source is localized in the zonal direction, the wave emanating from it needs to propagate around72

the globe to form a resonant mode (c.f. Lutsko and Held 2016). If the leakage to the equator is73

too strong, a circumglobal mode will not form. Thus, the existence of a zonal waveguide (e.g74

Hoskins and Ambrizzi 1993) is necessary for a normal mode to be established and resonantly75

excited. Various studies have developed diagnostics of the waveguidability of the flow, and used it76

to examine its dependence on parameters of the zonal mean flow (e.g Hoskins and Ambrizzi 1993;77

Branstator 2002; Manola et al. 2013; Wirth 2020). These studies all show that a strong localized78

zonal jet is needed to guide the waves zonally.79

In this paper we will examine the role of meridional trapping in a simple model which allows80

an analytical solution. We note that Tung (1979) derived analytical normal mode solutions in the81

presence of a critical surface with linear damping. His solution shows that quasi-normal modes,82
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and correspondingly quasi-resonance, do occur due to partial reflection. In that study, however,83

the amount of partial meridional reflection can’t be controlled. In this study, we take a different84

approach, in which we use a very simple model (barotropic 𝛽-plane channel model with constant85

zonal flow) in which we specify the amount of wave-activity leakage to the tropics (model and86

analytical solution described in section 2). We then examine the effect of meridional leakage on87

resonance, how it compares with the effects of damping, and whether the combination of realistic88

amounts of leakage and damping allow a reasonable amount of quasi-resonance to explain realistic89

wave amplification (section 3). We further compare our results to carefully constructed numerical90

solutions of a barotropic channel model with a meridionally-localized zonal jet stream, and a leaky91

equatorial boundary (section 4), and summarize with a discussion of the relevance to more realistic92

flows in section 5. To facilitate the flow of the paper, some of the technical points are discussed in93

appendices.94

2. Analytic solutions of a barotropic 𝛽-plane channel model95

To incorporate leakage into an analytical forced wave solution, we use the simplest setup of a96

zonally-oriented Rossby wave guide, a 𝛽-plane channel model, with poleward and equatorward97

boundaries at 𝑦 = ±𝐿, a constant zonal flow 𝑢, and a meridionally localized (in the form of a 𝛿-98

function) stationary wave forcing of a given zonal wavenumber. This 𝛿-function forcing structure99

allows, via a Greens function method, to obtain analytical solutions for a partially reflecting100

southern channel boundary, which allows part of the wave activity to leak out. We will examine101

how linear drag and leakage through the equatorward boundary modify the amplitude and phase of102

the response to forcing, and specifically, how it modifies the resonant response, viewed by varying103

the strength of the zonal mean zonal wind across its resonant value.104

a. Basic model and Greens function forcing setup105

We assume a zonal mean zonal flow 𝑢, with linear momentum damping 𝛼. We express the106

anomaly fields (deviation from a zonal mean) in terms of a streamfunction 𝜓, which satisfies107

𝑣 =
𝜕𝜓

𝜕𝑥
, 𝑢 = − 𝜕𝜓

𝜕𝑦
, and 𝑞 = 𝜕𝑣

𝜕𝑥
− 𝜕𝑢
𝜕𝑦

=
𝜕2𝜓

𝜕𝑦2
+ 𝜕2𝜓

𝜕𝑥2
, where 𝑣, 𝑢, and 𝑞, are the meridional wind, the108

zonal wind and vorticity anomalies respectively, and 𝑡, 𝑥, and 𝑦 are the time, zonal direction and109

meridional direction coordinates. The linearized vorticity equation with topography ℎ(𝑥, 𝑦) as110
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forcing is then:111 (
𝜕

𝜕𝑡
+𝑢 𝜕

𝜕𝑥
+𝛼

) (
𝜕2𝜓

𝜕𝑦2
+ 𝜕

2𝜓

𝜕𝑥2

)
+ 𝜕𝜓
𝜕𝑥
𝑞𝑦 = − 𝑓𝑜𝑢

𝜕ℎ

𝜕𝑥
(1)

where 𝑞𝑦 = 𝛽− 𝑑2𝑢
𝑑𝑦2
is the meridional gradient of the zonal-mean flow vorticity, and 𝑓𝑜 is the central112

channel Coriolis force.113

To allow for an analytical solution, we will assume a constant zonal-mean zonal flow 𝑢 =𝑈, and114

use a Green’s function approach, where we examine the response 𝐺𝑘 (𝑦, 𝑦′), to a pure sinosodial115

topography in the zonal direction, localized at a single latitude 𝑦′ : ℎ(𝑥, 𝑦) = 𝛿(𝑦 − 𝑦′)𝑒𝑖𝑘𝑥 . The116

response to a general topography ℎ(𝑥, 𝑦) can then be obtained by taking a Fourier transform in the117

zonal direction, and for each zonal component, convolving the response to the Green’s function118

with the full forcing at zonal wavenumber 𝑘:119

𝜓𝑘 (𝑦) =
∫ 𝐿

−𝐿
𝐺𝑘 (𝑦, 𝑦′)ℎ𝑘 (𝑦′)𝑑𝑦′ (2)

where ℎ𝑘 (𝑦) is the Fourier component 𝑘 of the topography ℎ(𝑥, 𝑦). In what follows wewill examine120

a single zonal Fourier mode and drop the subscript 𝑘 .121

Looking for steady solutions (to fit the stationary forcing), we assume a solution of the form:122

𝜓(𝑥, 𝑦) = 𝐺 (𝑦, 𝑦′)𝑒𝑖𝑘𝑥

Plugging in to equation 1, after taking into account that 𝑢(𝑦) =𝑈 = 𝑐𝑜𝑛𝑠𝑡 (which yields 𝑞𝑦 = 𝛽),123

we are left with solving the following equation:124

𝑑2𝐺

𝑑𝑦2
+

(
𝛽

𝑈 − 𝑖𝛼
𝑘

− 𝑘2
)
𝐺 = − 𝑓𝑜

1− 𝑖𝛼
𝑘𝑈

𝛿(𝑦− 𝑦′) (3)

Away from the forcing latitude 𝑦′, the solution will be that of the homogeneous problem, and will125

assume the form 𝑒𝑖𝑙𝑦, 𝑒−𝑖𝑙𝑦 where126

𝑙2 =
𝛽

𝑈 − 𝑖𝛼
𝑘

− 𝑘2 (4)

6



For the inviscid case, we get 𝑙 (𝛼 = 0) = 𝑙 where127

𝑙 =

√︂
𝛽

𝑈
− 𝑘2 (5)

In appendix 5 we show that the corresponding complex meridional wavenumber approximately128

equals:129

𝑙 ≈ 𝑙 + 𝑖𝛼

𝐶𝑔𝑦
(6)

where 𝐶𝑔𝑦 = 2𝑘𝑙𝛽
(𝑘2+𝑙2)2 is the meridional group speed1. Note that for a wave solution, we need 𝑙 to be130

real, meaning 𝛽

𝑈
> 𝑘2.131

The full solution is then comprised of two parts, equatorwards and polewards of the forcing:132

𝐺 (𝑦, 𝑦′) =


𝐴1𝑒

𝑖𝑙𝑦 + 𝐴2𝑒−𝑖𝑙𝑦 𝑦 > 𝑦′

𝐵1𝑒
𝑖𝑙𝑦 +𝐵2𝑒−𝑖𝑙𝑦 𝑦 < 𝑦′

(7)

and the meridional EP flux, which represents the meridional flux of wave activity, equals:133

𝐹(𝑦) = −𝑢𝑣 = −1
2
ℜ(𝑢𝑣∗) ≈ 𝑘

2


𝑙

(
|𝐴1 |2𝑒

− 2𝛼
𝐶𝑔𝑦

𝑦 − |𝐴2 |2𝑒
2𝛼
𝐶𝑔𝑦

𝑦
)
− 2𝛼
𝐶𝑔𝑦

ℑ
(
𝐴1𝐴

∗
2𝑒
2𝑖𝑙𝑦 ) 𝑦 > 𝑦′

𝑙

(
|𝐵1 |2𝑒

− 2𝛼
𝐶𝑔𝑦

𝑦 − |𝐵2 |2𝑒
2𝛼
𝐶𝑔𝑦

𝑦
)
− 2𝛼
𝐶𝑔𝑦

ℑ
(
𝐵1𝐵

∗
2𝑒
2𝑖𝑙𝑦 ) 𝑦 < 𝑦′

(8)

whereℜ and ℑ denote the real and imaginary components, and the approximation of 𝑙 for small 𝛼134

(equation 6) was assumed. Physically, 𝐹(𝑦) is the sum of a poleward (𝐴1, 𝐵1) and equatorward (𝐴2,135

𝐵2) propagating waves, with the temporal decay at rate 𝛼 resulting in a spatial decay rate of 𝛼
𝐶𝑔𝑦
,136

with an additional component (the imaginary term) which arises due to the effect of the damping137

on the phase of the waves (via the effect on 𝑙).138

The coefficients 𝐴1,2 and 𝐵1,2 need to be determined from the boundary conditions at 𝑦 = ±𝐿,139

and from the following matching conditions at 𝑦 = 𝑦′, implemented by taking the limit of 𝜖 going140

1Note that the group speed is by definition positive. Here we choose the convention that 𝑙 is positive, and the wave solution is 𝑒±𝑖𝑙𝑦 . Under this
convention, the poleward propagating part of the wave is proportional to 𝑒𝑖𝑙𝑦𝑒

− 𝛼
𝐶𝑔𝑦

𝑦
, which decays polewards, while the equatorward propagating

part of the solution is proportional to 𝑒−𝑖𝑙𝑦𝑒
𝛼

𝐶𝑔𝑦
𝑦
, which decays equatorwards.
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to zero:141

lim
𝜖→0

(𝐺 (𝑦′+ 𝜖, 𝑦′) −𝐺 (𝑦′− 𝜖, 𝑦′)) = 0

lim
𝜖→0

(
𝑑𝐺
𝑑𝑦

|𝑦′+𝜖 − 𝑑𝐺
𝑑𝑦

|𝑦′−𝜖
)
= − 𝑓0

1− 𝑖𝛼
𝑘𝑈

(9)

The first matching condition insures continuity of pressure and meridional flow, and the second142

condition is obtained by integrating equation 3 in 𝑦.143

b. Boundary conditions incorporating leakage144

The simple boundary condition of no meridional flow into across the channel walls implies145

𝐺 (±𝐿, 𝑦′) = 0. We will assume this always holds at the poleward boundary 𝑦 = 𝐿. This implies146

𝐴2 = −𝐴1𝑒𝑖2𝑙𝐿 , which yields147

𝐺 (𝑦 > 𝑦′, 𝑦′) = 𝐴
(
𝑒𝑖𝑙 (𝑦−𝐿) − 𝑒−𝑖𝑙 (𝑦−𝐿)

)
(10)

where 𝐴 ≡ 𝐴1𝑒𝑖𝑙𝐿 .148

The vanishing of the streamfunction at the walls implies full reflection of waves from it. This149

is seen by implementing the rigid wall boundary condition (equation 10) into the meridional150

component of the Eliassen-Palm (EP) flux (Eq. 8):151

𝐹(𝑦) (𝑦 > 𝑦′) ≈ 𝑘𝑙 |𝐴|2 sinh
(
2𝛼
𝐶𝑔𝑦

(𝑦− 𝐿)
)
+ 𝑘𝛼

𝐶𝑔𝑦
sin(2𝑙 (𝑦− 𝐿)) (11)

which vanishes at 𝑦 = 𝐿. Note that in the case of inviscid flow, 𝐹(𝑦) = 0 everywhere, not just at the152

boundaries, consistent with the polewards and equatorwards components having equal amplitudes,153

resulting in a zero net meridional wave activity flux.154

To incorporate leakage of wave activity at the southern boundary, we start from the expression155

for the wave activity flux at the southern part of the channel for the inviscid case (setting 𝛼 = 0 in156

equation 8):157

𝐹(𝑦) (𝑦 < 𝑦′) =
𝑘𝑙

2
( |𝐵1 |2− |𝐵2 |2) (12)

This solution, which is similar to that derived by Harnik (2001), indicates that 𝐹(𝑦) is constant158

when there is no damping. When some of the wave activity leaks through the equatorward159
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boundary, the poleward reflected wave has a smaller amplitude than the incident wave, resulting in160

a net EP flux out of the domain. This can be explicitly imposed, by setting:161

|𝐵1 |2 = |𝑅 |2 |𝐵2 |2

where |𝑅 |2 ≤ 1 is the amount of wave activity reflected back polewards from the southern channel162

boundary. From equation 12, themeridional EP flux south of thewave source is negative, consistent163

with a net equatorward wave activity flux:164

𝐹(𝑦) (𝑦 < 𝑦′) = −(1− |𝑅 |2) 𝑘𝑙
2
|𝐵2 |2

The quantity 1− |𝑅 |2 denotes the fraction of wave activity leakage out of the waveguide.165

Requiring that the meridional velocity at the boundary will vanish when there is full reflection166

(|𝑅 | = 1), we get the following condition on the solution coefficients167

𝐵1 = −|𝑅 |𝑒2𝑖𝑙𝐿𝐵2

and the following general solution168

𝐺 (𝑦, 𝑦′) =


𝐴

(
𝑒𝑖𝑙 (𝑦−𝐿) − 𝑒−𝑖𝑙 (𝑦−𝐿)

)
𝑦 > 𝑦′

𝐵

(
|𝑅 |𝑒𝑖𝑙 (𝑦+𝐿) − 𝑒−𝑖𝑙 (𝑦+𝐿)

)
𝑦 < 𝑦′

(13)

where we used 𝐵 ≡ −𝐵2𝑒𝑖𝑙𝐿 . Note that the meridional wind anomaly at the southern boundary is169

not zero when there is leakage of wave activity (|𝑅 | ≠ 1), consistent with a membrane, rather than170

with a rigid wall.171

This leaky boundary condition can also be phrased as the following condition at 𝑦 = −𝐿 (see172

Appendix 5 for a derivation):173 (
1− |𝑅 |
1+ |𝑅 |

)
𝑑𝐺

𝑑𝑦
+ 𝑖𝑙𝐺 = 0 (14)
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c. The full solution174

Plugging solution 13 into the matching conditions 9, we get the leaky, damped, Green’s function175

solution:176

𝐺 (𝑦, 𝑦′) = 𝑖 𝑓0

2𝑙 (1− 𝑖𝛼
𝑘𝑈

) (𝑒−2𝑖𝑙𝐿 − |𝑅 |𝑒2𝑖𝑙𝐿)



𝑦 > 𝑦′

(𝑒−𝑖𝑙 (𝑦′+𝐿) − |𝑅 |𝑒𝑖𝑙 (𝑦′+𝐿)) (𝑒𝑖𝑙 (𝑦−𝐿) − 𝑒−𝑖𝑙 (𝑦−𝐿))

𝑦 < 𝑦′

(𝑒𝑖𝑙 (𝑦′−𝐿) − 𝑒−𝑖𝑙 (𝑦′−𝐿)) (𝑒−𝑖𝑙 (𝑦+𝐿) − |𝑅 |𝑒𝑖𝑙 (𝑦+𝐿))
(15)

3. The effect of leakage and damping on resonance in the 𝛽-plane channel177

In what follows, we will examine the physical properties of the analytical solution, specifically,178

how the resonance properties of the inviscid perfect-channel case are modified by wave activity179

leakage, and how its influence compares with the effect of damping.180

a. Resonance in the inviscid perfect channel181

To do this we will start by examining the resonant response to the 𝛿-localized forcing in the case182

of a perfect waveguide. Setting 𝛼 = 0, |𝑅 | = 1 in equation 15 we get:183

𝐺 (𝑦, 𝑦′) = − 𝑓𝑜

𝑙 sin(2𝑙𝐿)


sin(𝑙 (𝑦′+ 𝐿)) sin(𝑙 (𝑦− 𝐿)) 𝑦 > 𝑦′

sin(𝑙 (𝑦′− 𝐿)) sin(𝑙 (𝑦 + 𝐿)) 𝑦 < 𝑦′

(16)

We see that the solution blows up if the parameters of the problem are such that 𝐿 = 𝜋
2𝑙 , where184

the meridional wavenumber 𝑙, c.f. equation 5, is a function of the externally specified zonal mean185

zonal wind 𝑈, the meridional PV gradient 𝛽, and the topography zonal wavenumber 𝑘 , and is186

independent of the channel width 𝐿. In this case, we have resonance, because the wave source187

excites waves which, after propagating polewards and equatorwards to the channel walls and getting188

reflected back, reach the source exactly in phase to enhance it.189
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Fig. 1 shows the amplitude and phase at 𝑦 = 0, for the case of a mid-channel source 𝑦′ = 0, as a199

function of the zonal wind 𝑈, for a given non-dimensional zonal wavenumber 𝑠 = 𝑘 𝐿𝑥

2𝜋 , 𝐿𝑥 being200

the zonal channel length, based on equation 16. We note that similar results can be obtained by201

varying other parameters, like the meridional channel width, or the zonal wavenumber, and for202

other channel-parameter values. The classical features of resonance are evident - the amplitude203

blows up, and there is a sharp phase shifting of 𝜋 radians across the resonance, with the wave204

geopotential being exactly out of phase with the forcing height anomaly for sub-resonant zonal205

winds, and in phase with the forcing for super-resonant zonal winds, and the anomaly being exactly206

in quadrature with the mountain at resonance (c.f. Vallis 2017).207

To examine the relevance of the resonance behavior of our point source solution to a more208

realistic, non-localized forcing, we compare to the response to a cosine-shaped mountain ℎ(𝑥, 𝑦) =209

cos(𝑙𝑜𝑦)𝑒𝑖𝑘𝑥 , for which the analytical solution to equation 1 is easily shown to be:210

𝜓𝑘 (𝑦) = − 𝑓𝑜

𝑙2− 𝑙2𝑜

(
cos(𝑙𝑜𝑦) −

cos(𝑙𝑦) cos(𝑙𝑜𝐿)
cos(𝑙𝐿)

)
(17)

where as before, 𝑙 satisfies equation 5. In appendix B1, we show how this solution is obtained211

using the Greens function approach, by plugging expression 16 for 𝐺 (𝑦, 𝑦′) into equation 2.212

We note a few things:213

• The first term in the parentheses is the particular solution for the cos(𝑙𝑜𝑦) forcing, while the214

second term is a homogeneous solution, which is added to insure that the boundary condition215

𝜓′(𝑥,±𝐿) = 0 is satisfied for any 𝑙𝑜.216

• As for the Green’s function solution, the homogeneous part of the solution here also blows217

up (resonance) when the flow parameters (𝑘 and𝑈) yield a meridional wavenumber which is218

equal to 𝑙 = 𝜋
2𝐿 .219

• For flow parameters which yield a meridional wavenumber equal to that of the forcing (𝑙 = 𝑙𝑜),220

but is not resonant in the sense above (𝑙 ≠ 𝜋
2𝐿 ), both the term in brackets, and the denominator221

𝑙2− 𝑙2𝑜 are zero, and we get the following finite solution (using l’Hôpital’s Rule):222

lim
𝑙→𝑙𝑜

𝜓𝑘 (𝑦) = − 𝑓𝑜
𝑦 sin(𝑙𝑜𝑦) cos(𝑙𝑜𝐿) − 𝐿 sin(𝑙𝑜𝐿) cos(𝑙𝑜𝑦)

2𝑙𝑜 cos(𝑙𝑜𝐿)

11
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Fig. 1. The amplitude (top) and phase (relative to the forcing zonal phase, in units of 𝜋, bottom) of the

mid-channel streamfunction for three different forcing shapes: ℎ𝑘 (𝑦) = 𝛿(𝑦) (thick black), ℎ𝑘 (𝑦) = cos(𝑙𝑜𝑦)

(red), and ℎ𝑘 (𝑦) = cos( 34 𝑙𝑜𝑦) (dashed blue), for 𝑙𝑜 = 𝜋
2𝐿 , as a function of the zonal mean zonal wind (𝑈), for

non dimensional zonal wavenumber 𝑠 = 4 at latitude 𝜙0 = 40𝑜, with the channel half-width 𝐿𝑜 = 2000𝑘𝑚, which

gives a resonant zonal mean zonal wind value of 𝑈0 = 13.57𝑚/𝑠𝑒𝑐. For plotting purposes, we offset the value

of 𝑈 by a tiny amount (10−5𝑚/𝑠𝑒𝑐) from resonance values, for the peak to be finite. Note that the y-axis is

logarithmic. For comparison between the different forcing shapes, the solutions were normalized by the integral

of the forcing over the channel, giving resonance-peak values of the cos(𝑙𝑜𝑦) and cos(3/4𝑙𝑜𝑦) solutions of 0.79

and 0.99 of the 𝛿(𝑦) solution peak, respectively.
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Note that this solution vanishes at the boundaries 𝑦 = ±𝐿, but in general, it is not resonant223

because the forcing structure, though a solution to equation 1, does not, in itself, satisfy the224

boundary conditions.225

• When the forcing is chosen to vanish at the channel walls - 𝑙𝑜 = 𝜋
2𝐿 - the second term in226

the parentheses of 17 is zero, yielding the more commonly discussed forced solution (e.g227

Petoukhov et al. 2013):228

𝜓𝑘 (𝑦) = − 𝑓𝑜 cos(𝑙𝑜𝑦)
𝑙2− 𝑙2𝑜

and when the flow parameters are such that 𝑙 = 𝑙𝑜, we get resonance. In this case the forcing229

has the structure of the free solution of equation 1 and the boundary conditions, meaning it is230

a normal mode of the system.231

The mid-channel amplitude for the cosine-forcing case is also shown in Fig. 1 (thin line).232

Comparing the responses to the point-source and cosine forcing shapes, we see a very similar233

dependence on 𝑈. The above results suggest the delta-forcing solution can be used to study the234

resonance properties of the system, which are not too sensitive to the meridional shape of the235

forcing, as long as it excites a normal mode of the system2.236

b. The resonant response in the presence of damping237

Keeping 𝛼 finite and plugging |𝑅 | = 1 in solution 15 gives:238

𝐺 (𝑦, 𝑦′) = 𝑖 𝑓0

2𝑙 (1− 𝑖𝛼
𝑘𝑈

) (𝑒2𝑖𝑙𝐿 − 𝑒−2𝑖𝑙𝐿)


(𝑒𝑖𝑙 (𝑦′+𝐿) − 𝑒−𝑖𝑙 (𝑦′+𝐿)) (𝑒𝑖𝑙 (𝑦−𝐿) − 𝑒−𝑖𝑙 (𝑦−𝐿)) 𝑦 > 𝑦′

(𝑒𝑖𝑙 (𝑦′−𝐿) − 𝑒−𝑖𝑙 (𝑦′−𝐿)) (𝑒𝑖𝑙 (𝑦+𝐿) − 𝑒−𝑖𝑙 (𝑦+𝐿)) 𝑦 < 𝑦′

(18)

In analogy to the inviscid case, we also obtain the following solution for a cosine forcing (see239

appendix B1):240

𝜓𝑘 (𝑦) = − 𝑓𝑜
𝛽

𝑈
− (𝑙2𝑜 + 𝑘2) (1− 𝑖𝛼

𝑘𝑈
)

(
cos(𝑙𝑜𝑦) −

cos(𝑙𝑜𝐿) (𝑒𝑖𝑙𝑦 + 𝑒−𝑖𝑙𝑦)
(𝑒𝑖𝑙𝐿 + 𝑒−𝑖𝑙𝐿)

)
(19)

2There is one caveat to this statement. Under very specific conditions, the 𝛿-forcing parameters can result in a destructive, rather than a
constructive interference of the reflected waves with the source. This appears as "anti-resonance" points, for which the amplitude sharply decreases
to zero. Such points do not appear in the cosine-forcing case because this cancellation happens for the forcing at a single latitude, so that forcings
from different latitudes take over the response. The destructive interference point, as well as higher order resonances occur outside the domain of
zonal wind values shown in Fig. 1, and are discussed in Section e.
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We note first that in the inviscid limit, 𝑙 (𝛼 = 0) = 𝑙, and 18, 19 converge to 16, 17. Fig. 2 shows247

the mid-channel amplitude and phase dependence on 𝑈, for the case of a delta-forcing at mid248

channel (𝑦 = 0), as well as for the cosine forcing with 𝑙𝑜 = 𝜋
2𝐿 , for a few values of the damping249

parameter. We see that for non vanishing 𝛼, the solution is no longer singular, though it is strongly250

amplified at the inviscid-resonance 𝑈 value, with a sharp phase shifting of almost 𝜋 radians. The251

quasi-resonant amplification, and the sharpness and amount of phase shifting decrease with the252

damping rate. We also see that for large enough damping (damping time scales smaller than 16253

days), the resonance peak shifts to larger values of𝑈, corresponding to narrower resonant channel254

widths. We also see, as in the conservative channel case, the shape of the resonance for a 𝛿 forcing255

is very similar to that of a cosine forcing.256
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Fig. 2. As in figure 1 but for a model with damping, for a forcing shape ℎ𝑘 (𝑦) = 𝛿(𝑦) (black) and ℎ𝑘 (𝑦) =

cos(𝑙𝑜𝑦) (red dashed), for different damping values, corresponding to damping time scales of 2, 4, 8, 16, 32, 64,

128 days. The damping strength affects the profiles in a monotonous way, with the peak amplitude increasing as

the damping gets weaker (a longer damping time scale), and the phase change around the resonance peak getting

sharper as the damping is reduced. The filled black/open red circles mark the peak amplitude for each profile.

The channel and flow parameters are similar to those of figure 1.
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c. The effect of leakage on the resonant response257

To examine the effects of leakage, we start with the case of no damping. Setting 𝛼 = 0 in258

solution 15 we get:259

𝐺 (𝑦, 𝑦′) = − 𝑓0

𝑙 (𝑒−2𝑖𝑙𝐿 − |𝑅 |𝑒2𝑖𝑙𝐿)


sin 𝑙 (𝑦− 𝐿) (𝑒−𝑖𝑙 (𝑦′+𝐿) − |𝑅 |𝑒𝑖𝑙 (𝑦′+𝐿)) 𝑦 > 𝑦′

sin 𝑙 (𝑦′− 𝐿) (𝑒−𝑖𝑙 (𝑦+𝐿) − |𝑅 |𝑒𝑖𝑙 (𝑦+𝐿)) 𝑦 < 𝑦′

(20)

Fig. 3 shows the mid-channel response to a Delta-function forcing at 𝑦′ = 0, for |𝑅 |2 ranging260

between 0.95 to 0 (leakage ranging from 5-100 percent). We see a clear indication for quasi-261

resonance (sharp amplification and almost-𝜋 phase shifting) for small leakage, with the peak262

amplification and phase shifting weakening and becoming wider as more wave activity leaks out.263

For the case of full leakage (|𝑅 |2 = 0), there is no amplification and the phase of the solution264

changes linearly with𝑈 across the whole range.265

The solution with no reflection from the southern boundary allows us to quantify the effect of269

resonance, by defining an amplitude amplification factor for a given |𝑅 | as the ratio between the270

resonance-amplitude and the corresponding amplitude for |𝑅 | = 0. We also define a phase-change271

rate as the amount of phase change per change in 𝑈 (in units of 𝜋

𝑚𝑠−1
). This value is largest (in272

absolute value) at the resonance peak. Table 1 shows the amplitude amplification factor and phase-273

change rate for solutions based on equation 20 (some of the runs are shown in Fig. 3). We see that274

the sensitivity to leakage is strongest near the pure resonance state, when there is very little leakage.275

However, even quite a lot of leakage (e.g. |𝑅 |2 = 0.25) can result in an amplitude amplification276

which is significant (2.6 for |𝑅 |2 = 0.25), which in the real atmosphere may be enough to lead277

to extreme weather. The phase-change rate also changes strongly with the amount of leakage.278

Thinking about a theoretical case in which a change in the mean flow of 1𝑚𝑠−1 leads to resonance,279

we will see a full change in phase of 𝜋 radians for small leakage values (c.f. less than 25% -280

|𝑅 |2 > 0.75), however, the phase change becomes quite small when the leakage is large, being less281

than 1/8𝑡ℎ of a wavelength for |𝑅 |2 = 0.25. The rate of change of the wave phase with the mean flow282

velocity may be a useful quantity to examine in observations to detect the possibility of resonance.283
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Fig. 3. As in figure 1 but for the leaky channel, for the forcing ℎ𝑘 (𝑦) = 𝛿(𝑦). The reflection coefficient |𝑅 |2

denotes the fraction of wave activity which is reflected back into the waveguide, while a fraction of 1− |𝑅 |2 leaks

out of the southern boundary.
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Table 1. The resonance amplitude-amplification factor and phase-change rate for different degrees of leakage

(1− |𝑅 |2), for the leaky channel with no damping (the reflectivity values in bold are shown in Fig. 3). The phase

change measure is the largest phase jump across two adjacent 𝑈 values, and is shown in units of 𝜋 radians per

𝑚𝑠−1.

284

285

286

287

Reflectivity |𝑅 |2 0.95 0.9 0.8 0.75 0.7 0.5 0.4 0.25 0.2 0.1 0

Amplitude amplification 65.9 32.1 15.2 11.8 9.5 4.9 3.8 2.6 2.2 1.7 1

Phase-change rate (𝜋/(𝑚𝑠−1)) 5.88 2.91 1.38 1.07 0.86 0.44 0.33 0.22 0.19 0.13 0.05

Comparing figures 2 and 3 suggests leakage and weak damping have a similar effect on res-288

onance3. This similarity is expected since both processes act to reduce the wave activity as it289

propagates back and forth between the meridional channel walls. A more quantitative comparison290

can be made by estimating the damping rate in the leaky channel by assuming that each time the291

wave traverses across the channel and back (a distance of 4𝐿), a fraction 1− |𝑅 |2 of its wave activity292

leaks out. Taking into account that the wave activity propagates at the group velocity speed 𝐶𝑔𝑦,293

and noting that the streamfunction 𝜓 decays at half the rate of the wave activity 𝐴 ∝ 𝑞′2 ∝ 𝜓′2
294

( 1
𝐴
𝑑𝐴
𝑑𝑡

≈ 1
2𝜓

𝑑𝜓

𝑑𝑡
), we get an estimate of an effective leakage decay rate of:295

𝛼𝐿𝑒𝑎𝑘𝑦 ≈
1
2
(1− |𝑅 |2)𝐶𝑔𝑦

4𝐿
(21)

For values of |𝑅 |2 = [0.95,0.9,0.75,0.5,0.25,0], and the parameters used to create Fig. 3, this gives296

damping time scales of 𝜏 ≈ 𝛼−1 = [8982,2246,359,90,40,22.5] days. Fig. 4 shows a comparison297

of the mid-channel amplitude solutions as a function of the channel width, for |𝑅 |2 = 0.95 and298

|𝑅 |2 = 0.5, alongside the damped-channel solutions with 𝛼𝐿𝑒𝑎𝑘𝑦 taken from equation 21. We see299

that for the weak leakage, the damped-solution matches the leakage one really well. For stronger300

leakage, the differences become apparent, suggesting equation 21 under-estimates the equivalent301

effective damping rate (stronger damping is needed to make the red curves closer to the black302

curves, which show slower amplitude and phase changes near the resonance compared to the red303

curves).304

An alternative quantitative measure to relate the effects of damping to leakage is by comparing308

the phase shifting across the resonance. Table 2 shows the phase change, as calculated in table 1,309

3Note however that strong damping, unlike strong leakage, changes the value at which resonance occurs.
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Fig. 4. The mid-channel amplitude for |𝑅 |2 = 0.95 (top) and |𝑅 |2 = 0.5 (bottom), similar to the curves shown in

figure 3 (black contours), along with the damped-channel solutions (similar to Figure 2 but for the corresponding

effective damping values given by equation 21.

305

306

307

for different damping values (calculated from equation 18, some values are shown in Fig. 2). By310

comparing the phase changes to those in table 1, we can see that leakage values of 5, 50 and 100311

percent of the wave activity (|𝑅 |2 = 0.95,0.5,0) correspond, respectively, to damping time scales312

of 256, 20 and 2 days.313
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Table 2. The resonance phase-change rate for different damping time scales (𝑑𝑎𝑦−1), for the runs calculated

from equation 18. Damping times in bold are shown in Fig. 2.

314

315

Damping 𝜏 (days−1) 256 128 64 45 36 20 16 10 8 6 2

Phase-change rate (𝜋/(𝑚𝑠−1)) 5.66 2.87 1.44 1.01 0.81 0.45 0.36 0.22 0.18 0.13 0.04

While the effect of damping and leakage on the resonant behaviour may be similar in terms316

of the amplitude and phase changes across the resonance values, the spatial mode structure is317

qualitatively different, as shown by Fig. 5. While poleward of the forcing the two wave fields318

look similar, equatorward of it, the damped solution is symmetric around the forcing while the319

leaky solution shows a south-west north east tilted wave which is nonzero at the channel wall.320

Correspondingly, the meridional EP flux is identically zero for the perfect waveguide. For the321

damped case it is directed away from the forcing (and symmetric for this mid-channel forcing322

location) with a value of zero at the walls, as required by the boundary conditions of perfect323

reflection. For the leaky case, on the other hand, it is piece-wise constant, with a value of zero324

poleward of the forcing and negative equatorward of the forcing, consistent with wave activity325

leakage out of the southern channel wall.326
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Fig. 5. The latitude-longitude structure of the stream-function (top row) and the meridional EP flux as a

function of latitude (bottom row) in response to a delta forcing at the mid channel latitude (𝑦 = 0) for the

following runs: a,d) A perfect channel (no damping and no leakage, see Figure 1). b,e) A leaky channel with

|𝑅 |2 = 0.05 and no damping (see Figure 3). c,f) A strongly damped channel (𝜏 = 2𝑑) with no leakage (see

Figure 2). Latitude is in units of 𝐿, the half-channel width. Longitude is is divided by the length of a latitude

circle.
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d. The combined effect of leakage and damping333

Fig. 6 shows the solution at mid-channel for Delta-function forcing at mid-channel, for the same334

|𝑅 |2 values shown in Fig. 3, for very weak (128 days) and stronger (8 days) damping rates. We335

see that damping acts to widen the quasi-resonance curves, and to reduce the sensitivity to weak336

amounts of leakage (e.g. the difference between the |𝑅 |2 = 0.95 to |𝑅 |2 = 0.9 curves is smaller for337

stronger damping). We also see that as with the damped perfect waveguide case, strong damping338

acts to shift the resonance peak to stronger zonal mean zonal winds (resonance occurs at larger 𝑈339

for a damping time scale of 8 days).340

To further quantify the effects of damping and leakage when both exist, we examine the domain-343

integrated eddy kinetic energy (EKE) budget. A similar analysis could be done for other conserved344

quantities, e.g. enstrophy or wave activity, but we choose EKE because for a 𝛿-function forcing,345

the PV perturbation is also a 𝛿 function and we want to avoid 𝛿-squared terms. Multiplying the346

PV equation 1 by the complex-conjugate streamfunction 𝜓∗, and taking a domain average, gives in347

steady state (see Appendix B1):348

𝛼

𝑢

(
𝐸𝐾𝐸 −𝑢′𝜓′|−𝐿

)
+𝑢′𝑣′|−𝐿 = − 𝑓𝑜 ℎ̃𝑣′(𝑦′) (22)

where EKE is the domain integrated eddy kinetic energy, and over-bar denotes a zonal mean, and349

ℎ̃ is the zonally-varying amplitude of the topographic 𝛿-forcing, ℎ = ℎ̃𝛿(𝑦− 𝑦′). Note that ℎ̃ has a350

sinusoidal structure in the zonal direction, ℎ̃ = ℎ𝑜𝑒𝑖𝑘𝑥 .351

The equation tells us that EKE generation by the forcing (right hand side term) is balanced by352

dissipation of EKE and leakage of wave activity out of the southern boundary (first and second353

terms on the left hand side, respectively). The damping term includes a boundary contribution,354

which is non-zero when both damping and leakage exist (recall that 𝜓′(−𝐿) = 0 when there is no355

leakage), however, we find that it is at least an order of magnitude smaller than the other terms,356

thus we can ignore it. An important point to note is that the forcing term depends on the zonal357

phasing between the meridional wind anomaly and the topography. When there is no damping or358

leakage, away from resonance, 𝑣′ is in quadrature with the forcing (𝜓′ is in or out of phase with359

the forcing), meaning there is no EKE generation, and all terms in the equation are zero. Right at360

resonance, on the other hand, 𝑣′ is in phase with ℎ, so that the forcing does generate EKE, which,361
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Fig. 6. Same as figure 3, but for damped leaky channel, for two values of damping: Top - 128days. Bottom -

16 days. Mid channel amplitude is on the left, and the mid-channel phase is on the right.

341

342

in the the absence of leakage and damping, must lead to a temporal growth of EKE (no steady362

state). Indeed, it is a known feature of resonant solutions that they give a linear amplitude growth363

of modes which, off-resonance, are not growing. Fig. 7 shows the EKE forcing term for two sets364

of runs, with varying degrees of leakage or damping. We see an opposite dependence of the EKE365

forcing strength on the magnitude of leakage/damping, for modes near or away from resonance.366

Near resonance, the EKE generation by the forcing is larger for smaller damping/leakage, while367
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Fig. 7. The EKE forcing term (RHS of equation 22), for a) the leaky inviscid runs shown in figure 3. b) the

damped non-leaky runs shown in figure 2.

371

372

well away from the resonance, this dependence changes, with a range of zonal wind values for368

which there is a non monotonic change of the EKE forcing magnitude with damping or leakage,369

with optimal forcing for a middle value.370
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e. Higher order resonances373

The results shown so far pertain to themain resonance of themodel, for which the nondimensional374

meridional wavenumber 𝑛 = 𝑙 𝐿
𝜋
= 12 , meaning exactly half a wave-length fits into the channel width.375

For lower values of 𝑈, however, for which the meridional wavenumber is larger (c.f. equation 5),376

higher order resonances appear, for larger values of 𝑛. Fig. 8 shows the mid-channel amplitude377

and phase for a few combinations of leakage and damping (shown for a narrower range of𝑈 values378

in figures 1, 2, 3). The perfect channel case (thick black curves) shows a weaker resonance at379

𝑈 = 2.82𝑚𝑠−1, and two "anti-resonance" points at which the amplitude decreases sharply towards380

𝑈 = 5.56𝑚𝑠−1 and 𝑈 = 1.66𝑚𝑠−1. An examination of the horizontal structure of the waves shows381

that the second resonance occurs for 𝑛 = 32 , while the "anti-resonance" points occur for 𝑛 = 1 and382

𝑛 = 2, respectively.383

Fig. 9, shows the horizontal structure of 𝜓′ for the second resonance (plot g) and the first "anti-389

resonance" (plot a), as well as for a 𝑈 value in between these two points (plot d). At resonance,390

the amplitude peaks at mid-channel. At "anti-resonance", on the other hand, the wave-node falls at391

mid-channel. Thus, while these meridional modes are free solutions of the homogeneous equation392

which also satisfy the boundary conditions, they are not really resonant, because the forcing does393

not project onto them in a way which keeps nudging them to grow once the mode has been394

established. This, however, is an artifact of the localized nature of the forcing at mid-channel, and395

we expect these modes to become resonant if the forcing will be placed off the channel center, or396

for a wider forcing.397

Examining the effects of damping or leakage on the second resonance, we see that although404

the effect of damping and leakage at the secondary resonance looks similar when looking at the405

mid-channel amplitude and phase (red and blue curves in Fig. 8), it is very different on the mode406

structure (Fig. 9g,h,i). While strong dampingmakes themode look similar to the primary resonance407

(compare figures 9g and 5c), leakage of wave activity from the southern boundary changes the408

structure of the wave only south of the forcing, where the main effect is westward phase tilt away409

from the forcing, along with an amplitude modification. The differences between leakage and410

damping is even more pronounced for the "anti-resonance" modes. While the special nature of411

this mode disappears for strong damping (the thick blue curves in Fig. 8 show no special behavior412

near these points), strong leakage shows a minimum mid-channel amplitude and EKE forcing,413
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Fig. 8. The solution as a function of 𝑈. Shown are: a) the mid-channel streamfunction amplitude, b) the

mid-channel streamfunction phase (in units of 𝜋), c) the channel-maximum streamfunction amplitude, d) the EKE

forcing. Shown are results for a perfect channel (no leakage or damping, thick black), full leakage no damping
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leakage (|𝑅 |2 = 1,𝛼 = 1/(128𝑑𝑎𝑦𝑠), thin blue), weak leakage no damping (|𝑅 |2 = 0,𝛼 = 0, thin red).
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Fig. 9. The latitude-longitude structure of the stream-function for the second resonance, at𝑈 = 5.56𝑚𝑠−1 (top

row), for 𝑈 = 4𝑚𝑠−1, a mid value between the second and third resonance (middle), and the third resonance, at

𝑈 = 2.82𝑚𝑠−1 (bottom row) for the following runs: a,d,g) A perfect channel (no damping and no leakage, see

Figure 1). b,e,h) A leaky channel with |𝑅 |2 = 0.05 and no damping (see Figure 3). c,f,i) A strongly damped

channel (𝜏 = 2𝑑) with no leakage (see Figure 2). Latitude is in units of 𝐿, the half-channel width. Longitude is

is divided by the length of a latitude circle.
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and a 𝜋 phase shift across these points (the thick red curves in Fig. 8). The 𝜋 phase shifting is414

clearly understood when examining the horizontal structure of the streamfunction at the first anti-415

resonance for the perfect channel case (𝑈 = 5.56𝑚𝑠−1, Fig. 9a), and for a slightly weaker zonal wind416

(𝑈 = 4.0𝑚𝑠−1, Fig. 9d) - as 𝑈 decreases, the meridional wavelength goes from half a wavelength417

being larger, to being smaller than half a channel width, resulting in a small oppositely phased418

peak at the channel center for the latter. Note that the anti-resonant mode for a perfect channel has419

a symmetric structure around the forcing, thus, it is not a pure standing mode structure with a node420

and a meridional 𝜋 phase shift in mid channel. This suggests the forced mode should be viewed as421

consisting of two separate modes, to both sides of the channel. When the channel is fully leaky,422

the equatorward mode assumes a propagating wave structure (a westward phase tilt towards the423

southern channel wall), and at the anti-resonance point, where the EKE forcing becomes zero due424

to destructive interference, the equatorward part disappears (Fig. 9b).425

The importance of these anti-resonance points is in pointing out a very strong sensitivity of the426

wave structure south of the forcing to the channel and forcing parameters, when the damping is427

weak enough. If relevant for more realistic settings, this might have implications for subtropical428

waves.429

4. Numerical solutions430

The solutions presented above allow a theoretical study of the linear stationary-wave response431

and resonance, in a very idealized channel, with a meridionally-localized forcing. We can use432

these analytical solutions to construct the solution to an arbitrary meridional forcing structure433

using equation 7, however, these solutions cannot be used when the zonal wind varies with latitude.434

Under more realistic settings of a jet-stream waveguide, the membrane-like leaky channel wall435

represents the subtropical turning latitude, which will allow partial tunneling to the tropics where436

the waves are damped. A systematic study the effect of leakage on quasi-resonance under more437

realistic conditions requires using a numerical model. To incorporate leakage, we will examine438

the numerical solution of a stationary wave channel model in which we have a sponge layer in the439

southern part of the domain to represent leakage.440
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The model solves equation 1 for meridionally varying zonal mean zonal flow 𝑢(𝑦), damping441

𝛼(𝑦), and topography ℎ(𝑥, 𝑦). Examining the response to the 𝑘’th zonal Fourier component ℎ𝑘 (𝑦),442

we get the following equation for the stream-function response 𝜓𝑘 :443 (
1− 𝑖𝛼

𝑘𝑢

)
𝑑2𝜓𝑘

𝑑𝑦2
+

[
𝑞𝑦

𝑢
−

(
1− 𝑖𝛼

𝑘𝑢

)
𝑘2

]
𝜓𝑘 = − 𝑓𝑜ℎ𝑘 . (23)

As boundary conditions we specify 𝜓𝑘 = 0 at the northern and southern boundary of the compu-444

tational domain. Eq. (23) is discretized with the help of standard centered differences, and the445

resulting matrix equation is solved using the python package SciPy. In the remainder of this paper446

we assume 𝑢 > 0 throughout the interior of the domain such that (23) is free of singularities. For447

later reference we define the square of the stationary wavenumber448

𝐾2𝑠 =
𝑞𝑦

𝑢
, (24)

and the dimensionless stationary wavenumber449

𝐾̂𝑠 =
𝐿𝑥

2𝜋

√︃
𝐾2𝑠 . (25)

Our standard configuration is chosen very similar to that from the analytical treatment. In450

particular, we use a channel width of 4× 103 km extending from 𝑌min = −2× 103 km to 𝑌max =451

−2 × 103 km and a (dimensionless) zonal wavenumber 𝑠 = 4. The meridional profile of the452

orography is specified as453

ℎ𝑘 (𝑦) = ℎ0 cos2
(

𝜋 𝑦

ℎ𝑁 − ℎ𝑆

)
(26)

for ℎ𝑆 ≤ 𝑦 ≤ ℎ𝑁 , and zero otherwise, with ℎ𝑆 = −500 km, ℎ𝑁 = 500 km, and ℎ0 = 1. By design,454

the meridional width of ℎ𝑘 (𝑦) is much smaller than the channel width, such that it is close to a455

delta function at 𝑦 = 0 that we considered in our analytical treatment. At the same time, it is wide456

enough such that it is represented by a fair number of grid points and, hence, properly resolved in457

our numerical treatment.458
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(a) (b)

(c) (d)

Fig. 10. Amplitude and phase behavior of the complex function 𝜓𝑘 (𝑦) for the numerical solution in a channel

with a constant basic state zonal wind 𝑈, as a function of 𝑈. The (a) amplitude (maximum value of the

streamfunction 𝜓 ′ in the channel) and (b) phase, for the fully reflecting boundaries. (c) amplitude and (d) phase

for a sponge-leakage setup at the southern boundary of the notional channel (cf. the dashed line in Fig. D1b). In

all panels, the different lines refer to different values of the constant damping coefficient 𝛼0.

468

469

470

471

472

a. Exploring boundary conditions459

Our boundary condition for 𝜓𝑘 corresponds to perfect reflection at the northern and southern460

boundary of the computational domain. For illustration we compute the numerical solution461

for a constant 𝑢 =𝑈 and various values of a constant damping coefficient 𝛼 = 𝛼0, as this allows462

comparisonwith our analytical solution. The result is provided in the top rowof Fig. 10. Apparently,463

there is a strong similarity to our no-leakage analytical solutions (Fig. 2), showing a resonant peak464

at 𝑈 = 13.6m s−1 and a jump in the phase of 𝜓𝑘 for the undamped case. For increasing damping,465

the behavior gets increasingly smoother as expected. The pattern of the streamfunction is shown466

in Fig. 11a.467
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(a) (b)

(c)

Fig. 11. Normalized streamfunction from the numerical solution with 𝑠 = 4 and no damping for three different

model configurations. (a) Standard configuration with perfectly reflecting boundaries and a constant basic wind

𝑈 = 13.6m s−1 ; (b) same as panel (a) except that the southern boundary of the notional channel has effectively

been replaced by a sponge-leakage condition; (c) configuration with the jet-like wind profile from Fig. 13a with

a sponge-leakage southern boundary condition.
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474

475

476
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In our next step we aim to simulate a channel that allows wave activity to leak out at the southern478

boundary. Numerically this can be achieved by a so-called sponge in part of the computational479

domain; more specifically, the damping coefficient is judiciously specified as a function of latitude480

such that the wave activity is reduced to zero before the wave reaches the boundary; at the same481

time, the spatial increase of the damping coefficient must be gradual enough such that it does482

not lead to spurious reflection. To construct such a sponge layer, we use two different types of483

sponges, one with a cosine-like dependence on latitude and another one with a quasi-exponential484
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dependence on latitude. The former is used for heuristic purposes, while the latter is meant to be485

used in all final applications. Details about the sponge design are provided in appendix B1.486

Although generally the sponge technique is well established, we report here about a few experi-487

ments with our cosine-sponge (see Fig. D1a) in order to learn how to properly design the sponge488

for our purposes. In this set of experiments the sponge-free area is inviscid, i.e., 𝛼0 = 0. Varying489

the amplitude of the sponge 𝛼𝑠 between 0.3 day−1 and 1000 day−1, we obtain the result shown in490

Fig. 12a. The behavior for 𝛼𝑠 = 0.3 day−1 is very similar to that shown in Fig. 10a (black line),491

indicating that the sponge is very weak and does not have a strong influence. By contrast, the492

result for the very strong sponge amplitude (𝛼𝑠 = 1000day−1, red line) suggests that there is spu-493

rious reflection due to the strong spatial increase of the damping coefficient, resulting in resonant494

behavior at a lower value of 𝑈 compared to 𝛼𝑠 = 0.3 day−1. The two intermediate values of 𝛼𝑠495

(orange and light blue line) show a weaker resonant peak as well as a gradual shift in the location496

of the resonance. We interpret this as a situation in which the damping from the sponge effectively497

reduces the resonant amplitude, while the steepness of the sponge increasingly shifts the location498

of the resonance.499

The shift in the location of the resonance to lower values of𝑈 for increasing sponge amplitudes 𝛼𝑠500

can be explained as follows. For a constant zonal basic wind and no damping, one expects resonance501

when the zonal and the meridional wavenumber satisfy 𝑘2 + 𝑙2 = 𝛽/𝑈. Using the dimensionless502

wavenumbers 𝑠 and 𝑛, one obtains503

𝑈res =
𝛽

𝑠2
(
2𝜋
𝐿𝑥

)2
+𝑛2

(
𝜋
𝐿𝑦

)2 (27)

as a prediction for the resonant value of 𝑈. The large-amplitude sponge effectively leads to504

reflection at the steep part of the sponge, which is inside the computational domain; thus, it505

effectively reduces the value of 𝐿𝑦, and this leads to a reduction of𝑈res according to (27).506
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(a) (b)

Fig. 12. Resonant behavior for 𝛼0 = 0 and various configurations of the cosine-shaped sponge (see Fig. D1a).

Both panels show the maximum of the streamfunction 𝜓 ′ in the sponge-free area as a function of the constant

basic state zonal wind𝑈, and the four lines in each panel represent the result for different parameter combinations

that vary the strength and the steepness of the sponge. (a) Fixed channel width with 𝑌min = −2× 103 km, but

varying values for the sponge amplitude 𝛼𝑠; (b) fixed sponge amplitude 𝛼𝑠 = 0.3 day−1, but varying channel

width corresponding to different values of 𝑌min.
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There is an alternative way to increase the strength of the sponge that does not necessitate an513

increase of sponge amplitude: namely by keeping the sponge amplitude at a fairly low value514

(𝛼𝑠 = 0.3 day−1) and, instead, extending the computational domain further towards the south. The515

results of this set of experiments in shown in Fig. 12b. The curve for 𝑌min = −2× 103 km (dark516

blue) is identical to the dark blue line in Fig. 12a (note that the two panels cover a different range517

of values for 𝑈). Increasing the channel width (light blue line) shifts the location of the dominant518

resonance towards a larger value of 𝑈 (namely 𝑈 ≈ 21.3m s−1 ) and lowers the amplitude of the519

resonant peak owing to the increased damping with the more extended sponge. At the same time,520

a secondary resonant peak appears at 𝑈 ≈ 13.7m s−1 , corresponding to the second meridional521

mode 𝑛 = 2. Increasing the channel width even further (orange and red lines) keeps shifting the522

corresponding resonant peaks to larger values of 𝑈 and makes even more peaks visible in the523

displayed range of values; however, at the same time the damping from the more extended sponge524

reduces the resonant peaks such that there is no longer any visible resonant behavior in the dark525

red curve. We conclude that the sponge design corresponding to the red line in panel b effectively526

simulates a fully-leaking boundary at 𝑦 = −2×103 km.527
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Having gained intuition into the sponge design with the help of the cosine-like sponge, we now528

switch to the quasi-exponential sponge, because the latter is better suited to obtain an efficient529

sponge. In addition, we now keep the area between 𝑦 = −2×103 km and 𝑦 = 2×103 km free of any530

sponge; at the same time we extend the computational domain southward to 𝑌min = −20×103 km531

and use a value of 𝛼𝑠 = 1 day−1. This sponge design is meant to be final and will be used in the532

remainder of this section.533

The resulting behavior is shown in the bottom row of Fig. 10; it is drastically different from the534

behavior for the fully reflecting boundaries (shown in the top row of the same figure). The reason535

for this stark difference is that our quasi-exponential sponge effectively simulates a fully-leaking536

boundary at 𝑌min = −2× 103 km, and apparently this eliminates any hint of resonant behavior in537

the amplitude and phase dependence on the zonal wind 𝑈, similar to the analytical solution for538

a fully-leaking channel (c.f. the |𝑅 |2 = 0 lines in Fig. 3). The pattern of the streamfunction for539

𝑈 = 13.6m s−1 is provided in Fig. 11b: northward of the forcing (i.e., for 𝑦 > 0), the pattern looks540

quite like in the perfectly reflecting case (cf. Fig. 11a); however, southward of the forcing (i.e., for541

𝑦 < 0), there is a clear phase tilt consistent with southward propagation of wave activity. This is542

similar to the analytical solution (not shown, but see the similar structure for the case with 95%543

leakage in Fig. 5b.)544

b. Basic state with a Gaussian jet545

We now make use of the numerical model in order to investigate a basic state wind profile that546

varies with latitude. More specifically, we start with a constant zonal wind with strength 5m s−1547

and superimpose a Gaussian jet with a standard deviation of 600 km and an amplitude of 25m s−1 .548

As a result, we obtain a jet-like profile with the strength of the jet reaching 30m s−1 at 𝑦 = 0549

(Fig. 13a). The profile of the corresponding dimensionless stationary wavenumber 𝐾̂𝑠 is shown in550

in Fig. 13b. According to WKB theory, the regions where 𝐾̂𝑠 > 𝑠 are wave propagation regions,551

where the solution assumes a wave-form, and there regions where 𝐾̂𝑠 < 𝑠 are wave-evanescence552

regions where the solutions are exponential. The latitudes at which 𝐾̂𝑠 = 𝑠 are turning surfaces,553

from which the waves are reflected back (obtained formally by asymptotic matching of the WKB554

solutions on both sides of the turning latitudes to an Airy function, c.f. Tung and Lindzen 1979b).555

The jet profile has a distinct relative maximum of 𝐾̂𝑠 at 𝑦 = 0, with 𝐾̂𝑠 decreasing to zero and giving556
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way to imaginary values in the northern and southern parts of the channel, and returning to real557

values near the channel walls, suggesting the wave-geometry of the problem is an inner waveguide558

in which we force the wave, flanked by evanescent regions, which are further flanked by additional559

external wave propagation regions which are bounded by the channel walls. If we ignore the outer560

wave propagation regions (by assuming, for example, that the flanks of the jet are modified to make561

the imaginary 𝐾̂𝑠 regions essentially infinite), WKB theory suggests the waves would be fully562

reflected from turning latitudes, for any wavenumber 1 ≤ 𝑠 ≤ 8, resulting in a perfect waveguide563

with zero leakage (Hoskins and Ambrizzi 1993; Petoukhov et al. 2013; Kornhuber et al. 2017b).564

With the additional wave-propagation regions, some of the wave activity excited in the main565

waveguide will tunnel to walls (the exact amount depending on how wide the wave-evanescence566

region is relative to the exponential decay rate), from which they will be reflected back, yielding567

essentially a perfect waveguide. If on the other hand, we replace the southern wall with a sponge568

as constructed in the previous section, the wave activity which manages to tunnel out of the main569

waveguide southward will be fully absorbed, resulting, essentially in a leaky waveguide. Note that570

unlike the analytical model, the amount of wave activity leakage to the sponge depends on the571

structure of 𝐾̂𝑠 and on 𝑠, and is thus not something we can control.572
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(a)

(b)

Fig. 13. Model configuration with a jet-like profile for the basic state wind. Panel (a) shows the zonal wind

𝑢(𝑦), panel (b) shows the dimensionless stationary wavenumber 𝐾̂𝑠 (𝑦); negative values of 𝐾̂𝑠 (gray shading)

represent minus the imaginary part of 𝐾̂𝑠.
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To test this, we will evaluate the numerical solutions of this jet profile, with and without the576

sponge-leakage, for different values of 𝛼0. In this set of experiments, we need to change our strategy577

for probing resonant behavior, because the wind is not a constant any longer. Instead, we simply578

vary the (dimensionless) zonal wavenumber 𝑠, which for the current purpose is not even limited to579

integer numbers. The result for the model configuration without sponge-leakage is shown in the580

top row of Fig. 14. Apparently, there is a resonant peak at 𝑠 ≈ 4.3 with the amplitude (panel a) of581

the undamped solution going to infinity and the phase (panel b) changing discontinuously from 𝜋582

to 0. Qualitatively, this behavior is very similar to the behavior shown in Fig. 10a and b, except583

that the method of probing for resonance has changed.584
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(a) (b)

(c) (d)

Fig. 14. Resonant behavior in case of our jet-like profile of the basic state wind (see Fig. 13). Top row: perfectly

reflecting surfaces at the northern and southern boundary; bottom row: like top row except that the southern

boundary condition has effectively been replaced by sponge-leakage. The left column shows the maximum value

of the streamfunction 𝜓 ′ as a function of 𝑠; the right column shows the phase of the complex function 𝜓𝑘 at 𝑦 = 0

as a function of 𝑠. The different colored lines refer to different values of the constant damping coefficient 𝛼0.

585

586

587

588

589

We now repeat this simulation except that the southern boundary is replaced by the quasi-590

exponential sponge in a southward extension of the computational domain as detailed above and591

in the appendix. The result is shown in the bottom row of Fig. 14. As before, there is a clear peak592

of wave amplitude at 𝑠 ≈ 4.3 (panel c), which is likewise mirrored in the phase behavior (panel593

d). However, for the inviscid case (𝛼0 = 0, black lines) our solution is not consistent with perfect594

resonance as predicted for a perfect channel: the amplitude does not tend towards infinity and the595

phase does not show a discontinuity. Instead, the behavior is broadly consistent with the analytical596

leaky-waveguide solutions (e.g. Fig. 3), as expected if indeed the southern turning latitude is not597

perfectly reflecting, but rather it allows some of the wave activity to leak out of the jet-waveguide.598
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The pattern of the streamfunction (Fig. 11c) is also qualitatively like the analytical leaky waveguide599

solution (Fig. 5b): it shows a phase tilt close to the southern boundary, indicating leakage of wave600

activity at 𝑦 = −2×103 km. As expected, some of the wave activity has tunneled through the area601

with imaginary 𝐾̂𝑠 where it is slowly absorbed by the sponge essentially allowing wave activity to602

escape out towards −∞.603

Finally we compare the inviscid solution with sponge-leakage (black lines in Fig. 14c and d)604

with the damped solutions for a fully reflecting boundary (colored lines in Fig. 14a and b). This605

comparison suggests that the leakage of our jet-like profile is roughly equivalent to a dampingwith a606

12 day time-scale. From comparing the phase change in tables 1 and 2, a 12 day damping time scale607

is equivalent to about 70% leakage (30% reflectivity). Again, arguments which assume perfectly608

reflecting boundaries on the basis of the existence of two turning latitudes are quantitatively609

deficient by a considerable margin.610

5. Discussion611

In this work we examine the influence of a specified amount of wave activity leakage to the612

equator, on the resonant response to idealized forcing. The main novelty of our analysis is that we613

derive an analytical solution with which we can quantitatively examine the effects of a specified614

amount of waveguide-leakage, and compare it to the effects of damping. The ability to explicitly615

specify the amount of wave activity leakage, and get an analytical solution comes at the price616

of large simplification of the problem. We thus use a numerical model, for which we carefully617

construct a fully-leaking southern boundary, to further examine the effect of leakage in a similar618

setup but with a meridionally varying jet, rather than a constant zonal mean zonal wind.619

Using our analytical solution, we examine the resonant response to a forcing placed at the620

center of the waveguide, by varying the zonal mean flow incrementally across resonance. We621

vary separately and together, the amount of wave activity leakage (through the southern boundary622

condition) and the linear damping, to study their effect on the resonance behavior. Following are623

the main points to note about the analytical solution.624

1. For inviscid flow on a perfect waveguide (no leakage to the equator), we get a sharp increase625

in the wave amplitude and a sharp 𝜋-phase change across resonance. Leakage acts to decrease626

the resonant amplification, and make the phase change more gradual across the resonance,627
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so that at 100% leakage the solution shows no amplification or increased phase change at the628

resonance values. Strong damping, on the other hand, weakens the response, which shifts629

towards larger zonal wind values. It does not eliminate the resonant response as full leakage630

does.631

2. For a small wave activity leakage of magnitude 1− |𝑅 |2, the influence is similar to a damped632

wave with a damping rate corresponding to a loss of 1− |𝑅 |2 of the wave activity over the time633

it takes a wave packet to propagate the channel width back and forth with the theoretical group634

speed (calculated assuming no damping). For larger leakage, this gives an under-estimate of635

the effective damping rate.636

3. The latitude-longitude structure of the response is very different between damping and leakage.637

Damping introduces a westward phase tilt on both sides of the forcing, corresponding to an638

outward-directed decaying EP flux (inward-directed momentum flux), which reduces to zero639

at the rigid-lid boundaries. Leakage from the southern boundary, on the other hand, introduces640

a westward phase tilt towards the southern boundary, south of the forcing, with no phase tilt641

poleward of it. This corresponds to no EP flux polewards of the forcing and a constant negative642

(southward) EP flux south of the forcing.643

4. In addition to a main resonance peak, which occurs for the gravest meridional mode, we also644

get higher order resonance peaks, corresponding to the higher order meridional modes (we645

explicitly show the second mode peaks). We also find anti-resonance points, for which the646

meridional modes exactly cancel the forcing, resulting in a sharp amplitude decrease as the647

zonal mean zonal wind is gradually varied. The anti-resonance behavior involves a significant648

change in the meridional structure of the waves, specifically, the formation and shifting of649

meridional nodes, thus their appearance is sensitive to the latitude at which we sample the650

wave amplitude. In addition, the anti-resonance will vanish if the forcing has a meridional651

extent rather than a 𝛿-function structure.652

5. The above results can be reproduced by changing the zonal wavenumber or the channel width,653

rather than the zonal mean zonal wind value.654
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6. The analytical Green’s Function solution can be extended to an arbitrary forcing structure,655

by using a Fourier transform for a zonally-varying forcing, and meridionally convolving the656

solution with the forcing for latitude variations.657

To check if the main results hold for a meridionally varying jet, we implement leakage into658

a numerical 𝛽-plane channel model with linear damping, by adding a wide sponge layer to its659

southern edge, and exploring different zonal wind profiles and linear damping values. To check for660

a resonant response in these runs, we vary the zonal wavenumber. Following are the main results661

and conclusions from the numerical solutions:662

1. Wave activity leakage to the equator can be implemented into the channel model by adding a663

gradual enough and wide enough sponge layer to the southern part of the domain. We verify664

the effect of such sponge-leakage by testing it on a constant zonal wind setup, and verifying665

that resonance disappears in a similar manner to the analytical solution with full leakage.666

2. Adding a zonal jet to themodelwith no sponge reproduces a resonant behavior. However, when667

sponge-leakage is implemented at the southern boundary, outside the jet, beyond its southern668

flank, the resonance sharpness is considerably reduced, implying that the jet waveguide is669

leaky. Refractive index-based estimates that identify so-called turning surfaces, but don’t take670

leakage into account (e.g. Petoukhov et al. 2013, and following studies), may overestimate the671

potential for resonance by a considerable margin.672

The above solutions have allowed us to quantify and characterize the influence of wave-activity673

leakage to the equator in very idealized setups. More specifically, a rough estimate based on674

comparing the responses of the jets in the numerical runs with southern-boundary sponge-leakage675

and a wall, suggests the leakage of the jet is equivalent to a damping time scale of 12 days. In our676

analytical solution, a 12-day damping corresponds to a leakage of about 70% of the wave activity.677

There are a few important subtleties to note. In the analytical model setup, we specify the678

reflection coefficient |𝑅 |, where 1− |𝑅 |2 is the fraction of wave activity that leaks out to the equator.679

Given, however, that the wave source is part of the solution, as it depends on the phasing between680

the wave and the topography, deducing |𝑅 | from thewave solution itself involves solving a nonlinear681

equation, the form of which depends on the specifics of the forcing. Thus we were not able to682

derive a simple methodology to explicitly calculate the leakage from a given wave solution in a683
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general circulation model or reanalysis for which the explicit forcing effect on the stream-function684

is not straightforward to obtain. Also, in the numerical solution with sponge-leakage and a jet, the685

amount of leakage depends on the zonal mean zonal wind profile, as well as the proximity of the686

equatorward turning surface to the sponge. Thus, unlike the analytical solution, we are not able to687

specify the amount of leakage in a numerical model.688

A rough estimate of the leakage of a waveguide can be obtained from the ratio between the689

amount of wave activity which leaks to the equator (the meridional EP flux out of the southern690

waveguide boundary) and the source of wave activity in the wave guide. While the former is691

relatively straightforward to deduce, the latter is much more complex, as it depends on the physical692

process that excites waves, as well as the model setup and parameters. Nonetheless, several693

studies have obtained a rough estimate of the equatorward leakage, using analytical normal-mode694

solutions (Tung 1979) or idealized numerical model setups (Lutsko and Held 2016; Wirth 2020).695

The latter studies used a localized wave source to estimate the ratio between the amount of wave696

activity propagating into or remaining in the zonal waveguide, and that propagating or reaching697

equatorwards. These studies, as well as estimates from our numerical model (not shown) give698

estimates of at least 25% wave activity leakage even from a strong jet. More specifically, in Wirth699

(2020), a jet similar to that in our numerical simulations was estimated to have a waveguidability700

of about 60% meaning a leakage of about 40% (see figure 6a in Wirth 2020, for a jet strength701

of 25𝑚𝑠−1 and width of 5𝑜). This is smaller than our analytical-solution-based estimate of 70%,702

however, Wirth (2020) examined a jet on a sphere, and estimated the waveguidability using a703

forcing that is localized in longitude, thus, the reasons for this difference require further analysis.704

Despite the limitations of the analytical solution, and the inability to explicitly calculate a leakage705

factor in realistic models and observations, the analytical solutions suggest that quite large leakage,706

in itself, does not preclude the possibility that quasi-resonant amplification can be significant707

enough to result in a significant impact on regional weather conditions. For example, assuming708

a damping rate of 8 days (which is quite strong for the upper troposphere), a change in the jet-709

waveguide which decreases the leakage from 100% to 50% can result in an amplification by about710

a factor of 2 at resonance, and by about 20% if the leakage changes from 50% to 25% (compare711

the peak values of the cyan - 100%, purple - 50%, and green - 25% curves in Fig. 6a). Also, even712

for a 75% leakage, the mid-channel amplitude can almost double if the zonal mean zonal wind713
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changes by a few meters per second (see the amount of amplification of the green curve between714

𝑈 = 11𝑚𝑠−1 and 𝑈 = 14.5𝑚𝑠−1 in Fig. 6a). While a doubling of the wave amplitude is very small715

in our model, in the real world it can be enough to cause extreme weather.716

A main caveat in the relevance of our analysis to the real atmosphere is that the jet stream717

waveguide and the forcing are not zonally symmetric. In spite of this, circumglobal waves have been718

shown to dominate intra-seasonal variability (Branstator 2002). Kosaka et al. (2009) discussed the719

zonal structure and phasing of the circumglobal Northern Hemisphere summer Silk-Road pattern,720

and showed that the observed zonal phasing maximizes the energy conversion from the mean721

flow to the wave pattern, with the meridional energy conversion being most sensitive to the zonal722

phasing with respect to the zonal variations of the jet. The possibility of resonance playing a role in723

this sensitivity of the barotropic conversion remains to be studied. Circumglobal waves have been724

cited as the cause for the co-occurrence of extremes in several places around the globe (Davies725

2015). Often, however, we see amplified zonal wave-packets leading to extreme weather (e.g.726

Feldstein and Dayan 2008; Röthlisberger et al. 2016, 2019; Fragkoulidis et al. 2018; Sandler and727

Harnik 2020; Ali et al. 2021), with a tendency of the waves to amplify in a specific region with a728

specific zonal phasing leading to extended or recurrent extreme weather (e.g. Röthlisberger et al,729

2019; see figures 10, 12 in Fragkoulidis et al, 2018). Given that mathematically, wave packets are730

a superposition of a few close circumglobal modes, it remains to be examined if quasi-resonance731

of the carrier modes or the envelope modes can contribute to a zonally localized enhancement of732

waves.733
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APPENDIX A740

The approximate meridional wavenumber for the damped solution (equation 6)741

.742

Assuming weak damping, with a characteristic time scale much larger than the advective time743

scale, so that 𝛼̃ ≡ 𝛼
𝑘𝑈

≪ 1, we can approximate themeridional wavenumber using a Taylor expansion744

around the inviscid case:745

𝑙 ≈ 𝑙 |𝛼̃=0 +
𝜕𝑙

𝜕𝛼̃
|𝛼̃=0𝛼̃ (A1)

Using equation 4:746

𝜕𝑙

𝜕𝛼̃
=
1
2

(
𝛽

𝑈 (1− 𝑖𝛼̃) − 𝑘
2
)−1/2

𝑖𝛽

𝑈 (1− 𝑖𝛼̃)2
=

𝑖𝛽

2𝑙𝑈 (1− 𝑖𝛼̃)2
(A2)

Plugging intoA1, alongwith the definition of 𝛼̃, noting that 𝑙 (𝛼 = 0) = 𝑙 (equation 5), and expressing747

in terms of the group velocity, 𝐶𝑔𝑦 = 2𝑘𝑙𝛽
(𝑘2+𝑙2)2 =

2𝑘𝑙𝑈2
𝛽
, we get equation 6.748

APPENDIX B749

The boundary condition for a leaky waveguide750

Starting from the expression in equation 13 for 𝐺 (𝑦, 𝑦′) at the southern part of the domain751

𝐺 = 𝐵

(
|𝑅 |𝑒𝑖𝑙 (𝑦+𝐿) − 𝑒−𝑖𝑙 (𝑦+𝐿)

)
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we get:752

𝑑𝐺

𝑑𝑦
= 𝑖𝑙𝐵

(
|𝑅 |𝑒𝑖𝑙 (𝑦+𝐿) + 𝑒−𝑖𝑙 (𝑦+𝐿)

)
At the southern boundary (𝑦 = −𝐿) we thus have:753

𝐺 = 𝐵( |𝑅 | −1)
754

𝑑𝐺

𝑑𝑦
= 𝑖𝑙𝐵( |𝑅 | +1)

which gives the boundary condition 14.755

B1. The non-leaky cosine-forcing solution756

Starting with the inviscid model, we derive the solution 17 by plugging the Green’s Function757

solution 16 into equation 2, for ℎ𝑘 (𝑦) = cos(𝑙𝑜𝑦).758

𝜓′(𝑦) =
∫ 𝐿

−𝐿
𝐺𝑘 (𝑦, 𝑦′)ℎ𝑘 (𝑦′)𝑑𝑦′ = − 𝑓𝑜

𝑙 sin(2𝑙𝐿) ×(∫ 𝑦

−𝐿
sin(𝑙 (𝑦′+ 𝐿)) sin(𝑙 (𝑦− 𝐿)) cos(𝑙𝑜𝑦′)𝑑𝑦′+

∫ 𝐿

𝑦

sin(𝑙 (𝑦′− 𝐿)) sin(𝑙 (𝑦 + 𝐿)) cos(𝑙𝑜𝑦′)𝑑𝑦′
)
(B1)

Examining only the first integral, after taking out the factor sin(𝑙 (𝑦− 𝐿), we further develop, using759

the cosine and sine multiplication and addition/subtraction equalities:760

∫ 𝑦

−𝐿
sin(𝑙 (𝑦′+ 𝐿)) cos(𝑙𝑜𝑦′)𝑑𝑦′ =

− 1
2

(
cos((𝑙 (𝑦 + 𝐿) + 𝑙𝑜𝑦) − cos(𝑙𝑜𝐿)

𝑙 + 𝑙𝑜
+ cos(𝑙 (𝑦 + 𝐿) − 𝑙𝑜𝑦) − cos(𝑙𝑜𝐿)

𝑙 − 𝑙𝑜

)
=

𝑙

𝑙2− 𝑙2𝑜
[cos(𝑙𝑜𝐿) − cos(𝑙 (𝑦 + 𝐿)) cos(𝑙𝑜𝑦)] −

𝑙𝑜

𝑙2− 𝑙2𝑜
sin(𝑙 (𝑦 + 𝐿)) sin(𝑙𝑜𝑦) (B2)
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repeating this derivation for the second integral in equation B1, plugging both back into B1, we find761

that the sine terms at the end of equation B2 cancel out in equation B1 between the two integrals,762

and doing further manipulation on the remaining terms, we get solution 17.763

For the damped case, we can guess the solution to equation 3, by analogy with the inviscid764

solution 17, and noting that the following relation holds:765

(𝑙2− 𝑙2𝑜) (1−
𝑖𝛼

𝑘𝑈
) = 𝛽

𝑈
− (𝑘2 + 𝑙2𝑜) +

𝑖𝛼

𝑘𝑈
(𝑘2 + 𝑙2𝑜) (B3)

where we used the full definition of 𝑙2 (Equation 4), and not its approximation (Equation 6). The766

solution can then be verified by plugging into equation 3.767

APPENDIX C768

The EKE equation769

Starting from the PV equation (c.f. equation 1):770

𝜕𝑞′

𝜕𝑡
+𝑢 𝜕𝑞

′

𝜕𝑥
+ 𝑣′𝑞𝑦 +𝛼𝑞′ = − 𝑓𝑜𝑢

𝜕ℎ

𝜕𝑥
(C1)

multiplying by 𝜓′ and taking a zonal mean we get:771

𝑢 𝑣′𝑞′−𝛼𝜓′𝑞′ = − 𝑓𝑜𝑢 𝑣′ℎ (C2)

where overline denotes the zonal mean, and we used the relation between the streamfunction and772

the meridional velocity, 𝑣′ = 𝜕𝜓′

𝜕𝑥
, and the fact that the zonal derivative of the zonal mean is zero,773

and that 𝜓′𝑣′ = 0, and we assumed a steady state.774

Next, we integrate over the entire meridional domain. We first note the following relation:775

∫ 𝐿

−𝐿
𝜓′𝑞′𝑑𝑦 =

∫ 𝐿

−𝐿
𝜓′

(
𝜕𝑣′

𝜕𝑥
− 𝜕𝑢

′

𝜕𝑦

)
𝑑𝑦 =

∫ 𝐿

−𝐿

(
−𝑣′𝜕𝜓

′

𝜕𝑥
− 𝜕𝜓

′𝑢′

𝜕𝑦
+𝑢′𝜕𝜓

′

𝜕𝑦

)
𝑑𝑦 =

−
∫ 𝐿

−𝐿

(
𝑣′2 +𝑢′2 + 𝜕𝜓

′𝑢′

𝜕𝑦

)
𝑑𝑦 = 2𝐸𝐾𝐸 +𝜓′𝑢′|−𝐿 (C3)
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where 𝐸𝐾𝐸 ≡ 1
2 (𝑣′2 + 𝑢′2), and we used the boundary condition 𝜓

′(𝐿) = 0. Next noting that776

𝑣′𝑞′ = − 𝜕𝑢′𝑣′
𝜕𝑦
, thus777 ∫ 𝐿

−𝐿
𝑣′𝑞′𝑑𝑦 = 𝑢′𝑣′|−𝐿

where we use the boundary condition 𝑣′(𝐿) = 0. Plugging this, and equation C3 into equation C2,778

we get equation 22.779

APPENDIX D780

Design of the sponge781

The sponge is modeled through a latitude-dependent damping coefficient 𝛼sp(𝑦) such that the782

total damping coefficient is given by783

𝛼(𝑦) = 𝛼0 +𝛼sp(𝑦) . (D1)

Here, 𝛼0 is a constant damping coefficient that may be considered in addition to the sponge. In the784

northern part of the channel we define a sponge-free area for 𝑌𝑆 ≤ 𝑦 ≤ 𝑌𝑁 . South of 𝑌𝑆 the value of785

𝛼sp increases from 𝛼0 to a user-specified value of 𝛼𝑠 at the southern boundary of the computational786

domain.787

In thiswork, 𝛼sp(𝑦) ismodeled either through a cosine-dependence or through a quasi-exponential788

dependence. The cosine-sponge is used in order to systematically explore the impact of the sponge789

on the resonant behavior. Based on experience thus obtained, we then designed a quasi-exponential790

sponge, which is used for our main results in order to efficiently simulate a non-reflecting (i.e.,791

fully transparent) southern boundary of a notional channel that is less extended than the actual792

computational domain.793

The cosine-like sponge simply connects the constant value 𝛼0 in the sponge-free part of the794

domain with 𝛼𝑠 at the boundary of the computational domain as illustrated in Fig. D1a.795

The quasi-exponential sponge (see Fig. D1b) is specified such that 𝛼(𝑦) = 𝛼𝑠 at the southern796

boundary of the computational domain. Obviously, the exponential function is non-zero for any797

real value of 𝑦, which implies that there cannot be any sponge-free area. In order to circumvent798

this issue and guarantee a truly sponge-free area in the northern part of the domain, we use the799
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(a) (b)

Fig. D1. Profiles of the damping coefficient 𝛼(𝑦) for two different configurations that implement a sponge: (a)

cosine-like sponge, and (b) a quasi-exponential sponge. For illustration we used here 𝛼0 = 0.25 day−1 in panel

(a), 𝛼0 = 0 in panel (b), and 𝛼𝑠 = 3day−1 in both panels. In addition, in both panels, the sponge-free area is white,

while the sponge is marked by gray shading. The dashed line in panel b indicates the southern boundary of the

notional channel, for which the sponge effectively simulates a fully-leaking boundary condition.

813

814

815

816

817

following algorithm resulting in a sponge that is close to exponential for typical values of 𝛼0 and800

𝛼𝑠 used in this work:801

1. We start with a true exponential function 𝛼sp(𝑦) = 𝑎 exp(𝑏𝑦) and determine the coefficients 𝑎802

and 𝑏 such that 𝛼sp equals 𝛼sm = 0.1day−1 at the southern boundary of the sponge-free region,803

and 𝛼sp = 𝛼𝑠 at the southern boundary of the computational domain;804

2. We subtract 𝛼sm from the above-defined profile 𝛼sp(𝑦) such that the damping of the sponge805

approaches zero as 𝑦 approaches the sponge-free area806

3. We multiply the function 𝛼sp(𝑦) obtained in the previous step by a constant factor such as to807

ensure that the total 𝛼(𝑦) equals 𝛼𝑠 at the southern boundary of the computational domain.808

The design of the exponential sponge is such that the sponge-free area is meant to represent the809

domain of interest. At the same time, the computational domain is extended towards the south in810

order to contain the exponential sponge. This combination effectively simulates a fully-leaking811

boundary condition at the southern end of the domain of interest (dashed line in Fig. D1b).812
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